Most recent 10 articles: Nature Climate Change
 |
Global burned area increasingly explained by climate change - Nature Climate Change  (Oct 20, 2024) |
|
Oct 20, 2024 · Fire behaviour is changing in many regions worldwide. However, nonlinear interactions between fire weather, fuel, land use, management and ignitions have impeded formal attribution of global burned area changes. Here, we demonstrate that climate change increasingly explains regional burned area patterns, using an ensemble of global fire models. The simulations show that climate change increased global burned area by 15.8% (95% confidence interval (CI) [13.1–18.7]) for 2003–2019 and increased the probability of experiencing months with above-average global burned area by 22% (95% CI [18–26]). In contrast, other human forcings contributed to lowering burned area by 19.1% (95% CI ... Read more ... |
|
 |
Global exposure risk of frogs to increasing environmental dryness - Nature Climate Change  (Oct 20, 2024) |
|
Oct 20, 2024 · Compared with the risks associated with climate warming and extremes, the risks of climate-induced drying to animal species remain understudied. This is particularly true for water-sensitive groups, such as anurans (frogs and toads), whose long-term survival must be considered in the context of both environmental changes and species sensitivity. Here, we mapped global areas where anurans will face increasing water limitations, analysed ecotype sensitivity to water loss and modelled behavioural activity impacts under future climate change scenarios. Predictions indicate that 6.6–33.6% of anuran habitats will become arid like by 2080–2100, with 15.4–36.1% exposed to worsening drought, ... Read more ... |
|
 |
Climate justice beliefs related to climate action and policy support around the world - Nature Climate Change  (Oct 17, 2024) |
|
Oct 17, 2024 · Climate justice is increasingly prominent in climate change communication and advocacy but little is known about public understanding of the concept or how widely it resonates with different groups. In our global survey of 5,627 adults in 11 countries spanning the global north and south, most participants (66.2%) had never heard of climate justice. Nonetheless, endorsement of climate justice beliefs was widespread (for example, acknowledging the disproportionate impact of climate change on poor people and the underpinning roles of capitalism and colonialism in the climate crisis). Climate justice beliefs were also associated with various indices of climate action and policy support. ... Read more ... |
|
 |
Drought and aridity influence internal migration worldwide - Nature Climate Change  (Oct 14, 2024) |
|
Oct 14, 2024 · While the effects of climatic changes on migration have received widespread public and scientific attention, comparative evidence for their influence on internal migration worldwide remains scarce. Here we use census-based data from 72 countries (1960–2016) to analyse 107,840 migration flows between subnational regions. We find that increased drought and aridity have a significant impact on internal migration, particularly in the hyper-arid and arid areas of Southern Europe, South Asia, Africa and the Middle East and South America. Migration patterns are shaped by the wealth, agricultural dependency and urbanization of both origin and destination areas with migration responses being ... Read more ... |
|
 |
Canopy structure regulates autumn phenology by mediating the microclimate in temperate forests - Nature Climate Change  (Oct 13, 2024) |
|
Oct 13, 2024 · Autumn phenology plays a critical role in shaping the carbon sequestration capacity of temperate forests. Notable local-scale variations in autumn phenology have drawn increasing attention recently, potentially introducing substantial uncertainty when predicting temperate forest productivity. Yet the underpinning mechanisms driving these variations remain inadequately elucidated. Here we observed significant and consistent relationships between canopy structure and autumn phenology across six temperate forest sites, induced by the regulation effect of canopy structure on microclimate conditions. Incorporating the identified 'canopy structure–microclimate–autumn phenology’ pathway ... Read more ... |
|
 |
Assessing the impacts of fertility and retirement policies on China’s carbon emissions - Nature Climate Change  (Oct 10, 2024) |
|
Oct 10, 2024 · The gradual adjustment of fertility and retirement policies in China has social benefits in terms of coping with population aging. However, the environmental consequences of these policies remain ambiguous. Here we compile environmentally extended multiregional input–output tables to estimate household carbon footprints for different population age groups in China. Subsequently, we estimate the age-sex-specific population under different fertility policies up to 2060 and assess the impacts of fertility and retirement policies on household carbon footprints. We find that Chinese young people have relatively higher household carbon footprints than their older counterparts due to ... Read more ... |
|
 |
Maize breeding for smaller tassels threatens yield under a warming climate - Nature Climate Change  (Oct 10, 2024) |
|
Oct 10, 2024 · Breeding programmes have increased the yields of major crops, including maize (Zea mays L.), but the suitability of optimized traits to future climates remains unclear. Here, by comparing the responses of 323 elite maize inbred lines from different breeding eras under natural field conditions, we show that while newer lines exhibit higher grain yield than the early released lines under standard growth, the bred trait of reduced tassel size increases the susceptibility of newly released lines to high temperature during flowering. We identified a potential threshold for spikelets per tassel (~700), over which maize can produce a stably high seed set ratio under warm conditions, and ... Read more ... |
|
 |
A multi-model assessment of inequality and climate change - Nature Climate Change  (Oct 03, 2024) |
|
Oct 03, 2024 · Climate change and inequality are critical and interrelated issues. Despite growing empirical evidence on the distributional implications of climate policies and climate risks, mainstream model-based assessments are often silent on the interplay between climate change and economic inequality. Here we fill this gap through an ensemble of eight large-scale integrated assessment models that belong to different economic paradigms and feature income heterogeneity. We quantify the distributional implications of climate impacts and of the varying compensation schemes of climate policies compatible with the goals of the Paris Agreement. By 2100, climate impacts will increase inequality by ... Read more ... |
|
 |
Arctic soil carbon trajectories shaped by plant–microbe interactions - Nature Climate Change  (Oct 02, 2024) |
|
Oct 02, 2024 · Rapid warming in the Arctic threatens to amplify climate change by releasing the region’s vast stocks of soil carbon to the atmosphere. Increased nutrient availability may exacerbate soil carbon losses by stimulating microbial decomposition or offset them by increasing primary productivity. The outcome of these competing feedbacks remains unclear. Here we present results from a long-term nutrient addition experiment in northern Alaska, United States, coupled with a mechanistic isotope-tracing experiment. We found that soil carbon losses observed during the first 20?years of fertilization were caused by microbial priming and were completely reversed in the subsequent 15?years by ... Read more ... |
|
 |
Climate variability shifts the vertical structure of phytoplankton in the Sargasso Sea - Nature Climate Change  (Sep 24, 2024) |
|
Sep 24, 2024 · Marine phytoplankton are essential to ocean biogeochemical cycles. However, our understanding of changes in phytoplankton rely largely on satellite data, which can only assess changes in surface phytoplankton. How climate variability is impacting their vertical structure remains unclear. Here we use 33?years’ worth of data from the Sargasso Sea to show distinct seasonal and long-term phytoplankton climate responses in the surface mixed layer compared with the subsurface. Seasonally, the surface community alters their carbon-to-chlorophyll ratio without changing their carbon biomass, whereas the chlorophyll a and carbon of the subsurface community covaries with no change in their ... Read more ... |
|
|