View:Click here to view the article
Title:Airborne single-photon lidar system achieves high-resolution 3D imaging
Date:4/25/2024 4:05:05 AM
Summary:

Single-photon lidar uses single-photon detection techniques to measure the time it takes laser pulses to travel to objects and back. It is particularly useful for airborne applications because it enables highly accurate 3D mapping of terrain and objects even in challenging environments such as dense vegetation or urban areas.

"Using single-photon lidar technology on resource-limited drones or satellites requires shrinking the entire system and reducing its energy consumption," said research team member Feihu Xu from University of Science and Technology of China.

"We were able to incorporate recent technology developments into a system that, in comparison to other state-of-the-art airborne lidar systems, employs the lowest laser power and the smallest optical aperture while still maintaining good performance in terms of detection range and imaging resolution."

In Optica the researchers show that the system has the capability to achieve an imaging resolution that surpasses the diffraction limit of light when used with sub-pixel scanning and a new 3D deconvolution algorithm. They also demonstrate the system's ability to capture high-resolution 3D images during daytime over large areas aboard a small plane.

"Ultimately, our work has the potential to enhance our understanding of the world around us and contribute to a more sustainable and informed future for all," said Xu.

"For example, our system could be deployed on drones or small satellites to monitor changes in forest landscapes, such as deforestation or other impacts on forest health. It could also be used after earthquakes to generate 3D terrain maps that could help assess the extent of damage and guide rescue teams, potentially saving lives."

Shrinking single-photon lidar

The new airborne single-photon lidar system works by sending light pulses from a laser toward the ground. These pulses bounce off objects and are then captured by very sensitive detectors called...

Organization:PHYS.ORG - Earth
Date Added:4/26/2024 6:39:32 AM
=====================================================================